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Abstract

One goal of the LIFE space mission is to characterize the atmospheric components of terrestrial
exoplanets with a space-based mid-infrared nulling interferometer. A Monte Carlo simulation
was used to determine how good this instrument has to measure to confidently distinguish
between emission spectra of earth at different epochs and weather conditions, and to evaluate
which metric should be used to express how well the spectra can be distinguished.

The three investigated metrics, which are the posterior entropy, the confidence of inference,
and the probability of inference not agreeing with the ground truth, all show the same qualitative
behaviour, and can all be used for further work.

A confidence of inference of more than 97 % can be achieved with a spectral resolution of 50
and a signal-to-noise ratio of 5.

The source is available at https://github.com/thomabir/LIFE-spectroscopy.

1 Introduction

The goal of the LIFE space mission is to observe a
sample of terrestrial exoplanets with a space-based
infrared nulling-interferometer, and to characterize
their habitability and diversity [2, 4]. One focus of
the mission is to find signatures of potential biolog-
ical activity or at least habitability in the emission
spectra of terrestrial planets [3].

This work uses simulated spectra of earth at dif-
ferent epochs and weather conditions [5] to answer
two questions:

1. How well does the instrumentation on LIFE

have to measure to be able to confidently distin-
guish these spectra? Which spectral resolution
and signal-to-noise ratio are required?

2. What metric should be used to decide how well
those spectra can be distinguished, or more
generally, how well the experiment is expected
to perform?

The earth spectra that should be distinguished are
shown in fig. 1.

While there is no reason to expect that the emis-
sion spectra of the planets potentially observed by

LIFE will be similar to that of earth, this approach
constitutes a minimal requirement for the mission:
In order for LIFE to be successful, it should at least
be able to distinguish earth twins at different stages
of evolution. Furthermore, to determine which kind
of metric is useful to describe distinguishability, it is
easier to start with a small sample of hypotheses to
make computations quicker.

Bayesian experimental design [1] is used in sec-
tion 2 to quantify how well different hypotheses
can be distinguished with a given experiment. This
mathematical framework associates to each possi-
ble outcome of each possible experiment a number,
called the utility of the experiment, and provides a
way to calculate the utility of an experimental de-
sign. In order to use Bayesian experimental design,
a utility function has to be chosen, which can be a
straightforward one such as the confidence of the in-
ference, or a more complex one such as the entropy
of the posterior distribution.

Section 3 describes the setup of a Monte Carlo
simulation of the outcomes of many measurements
with a hypothetical instrumentation for LIFE. Such a
simulation was run for each utility function to find
out which one is most suitable to describe how well
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Fig. 1: Simulated infrared spectra of earth at different epochs (modern, 0.8 Gyr ago, 2.0 Gyr ago, 3.9 Gyr ago) and with different
weather (clear, cloudy). The goal of this work is to evaluate how good an instrument has to measure to be able to robustly
distinguish those spectra.

the different earth spectra can be distinguished.
The results of the simulation in section 4 show the

utility of different experimental designs, and in par-
ticular the utility of designs with constant exposure
time, but varying spectral resolution and signal-to-
noise ratio. This illustrates the compromise between
these two parameters, and how Bayesian experimen-
tal design can be used to find the “ideal” compro-
mise.

2 Theory

The analysis in this report is based on three topics:
Bayesian inference, Bayesian experimental design,
and information theory.

Bayesian inference is used as a tool for data analy-
sis, specifically to obtain the probability of a hypoth-
esis, given the measured data and the design of the
experiment.

Bayesian experimental design is a framework to
find an experimental design that is sufficient or even
optimal for distinguishing different hypotheses, avoid-
ing false positives, or gaining the maximum possible
amount of information. Optionally, constraints and
trade-offs between parameters of the experimental
design can be imposed.

Finally, information theory formalizes the intuitive
notion of information to a mathematical quantity
that can be calculated with Bayesian inference.

2.1 Bayesian inference

The following notation is used:

• δ is an experimental design,

• θ is a hypothesis, and

• x is a measured datum, which is a possible
realization of a hypothesis and a design.

The probability of measuring x, given the design δ
and hypothesis θ, is denoted as P(x | δ, θ).

To perform inference about the hypotheses, Bayes’
theorem,

P(θ | x, δ) =
P(x | θ, δ)P(θ)

P(x | δ) ,

is used to obtain the posterior likelihood P(θ | x, δ),
which is the probability of hypothesis θ, given the
measured datum and the experimental design

2.2 Bayesian experimental design

Bayesian experimental design assigns a utility U(δ)
to every experimental design δ. The goal of the utility
is to describe how good the expected performance of
an experimental design will be. The task of finding
the best possible experiment is then equivalent to
maximizing or minimizing the utility, depending on
its definition. There are many possible choices for
utility functions, such as

1. the expected information gain of an experi-
ment,
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2. the expected confidence that the most likely
hypothesis is correct, or

3. the probability that the most likely hypothesis
agrees with the ground truth.

Since the outcome of a realistic experiment is a
realization of a random process with probability dis-
tribution P(x | δ, θ), we have to calculate the utility
U(x|δ) of every possible realization, and then find
the expectation value,

U(δ) =
∫

P(x | δ)U(x | δ)dx. (1)

2.3 Utility functions

Depending on the goal of the experiment, there are
many possible choices for utility functions. Three
useful ones are investigated.

2.3.1 Entropy loss

A versatile choice of utility is the difference in en-
tropy H between prior P(θ) and posterior P(θ | x, δ),

U(x|δ) = −H[P(θ | x, δ)] + H[P(θ)]

= ∑
θ

P(θ | x, δ) log[P(θ | x, δ)]

−∑
θ

P(θ) log[P(θ)],

where the definition of entropy in information theory
[6] was used:

H(X) = −∑
x

P(x) log[P(x)].

Since the same flat prior is used throughout the re-
port, the term associated to the prior only shifts the
utility by a constant. To make the plots easier to read
without having to look back at the definitions, the
prior entropy is dropped from the utility, and only
the posterior entropy is used:

U(x|δ) = ∑
θ

P(θ | x, δ) log[P(θ | x, δ)].

The reason why the posterior entropy is a good
measure for information is described intuitively be-
low, and is justified in more detail in [6].1

1When retracing Shannon’s original proof that information
is entropy, note that Shannon describes the concept of the
information of a channel, whereas this work uses it for the
information of the posterior distribution, since it is directly
available with Bayesian inference. The difference is that
the sign of H is flipped, which also becomes evident in the
explanation below.

Intuitively, the posterior entropy is a good mea-
sure for information, because it is a metric for the
“peakedness” of the posterior, which in turn indi-
cates confidence. To see this, compare the best possi-
ble with the worst possible experiment:

The ideal experiment rules out all hypotheses ex-
cept for one, so the posterior is (0, . . . , 0, 1, 0, . . . , 0),
which has entropy 0. The worst possible experiment
leaves us with the posterior just being equal to the
prior, which in the unbiased case is (1/n, . . . , 1/n)
for n hypotheses, which has the maximum possi-
ble entropy log(n). Thus, the goal is to design an
experiment which minimizes the posterior entropy.

2.3.2 Confidence of inference

How confident are we that the most likely hypothe-
sis, given the measured datum and the experimental
design, is true?

This utility will be called the confidence of infer-
ence, and it is defined as

U(x|δ) = max
θ
{P(θ | x, δ)}.

This is the maximum of the posterior P(θ | x, δ), which
is the best candidate that Bayesian inference gives us
for the hypothesis. In other words, given the data,
the hypothesis is true with a probability of U(x|δ).

To make comparisons with other utility functions
easier, 1−U(x|δ) is used instead as the utility func-
tion in the plots in section 4, such that a low utility
corresponds to a useful experiment.

2.3.3 Probability of inference not agreeing with
ground truth

In a simulation, the true hypothesis from which the
data is generated, called ground truth, is directly
accessible. Thus, another possibility for the utility is
to compare the result of Bayesian inference, which is
the hypothesis with maximum posterior likelihood,
to the ground truth. This utility is defined as

U(x|δ)

=

{
0 if maxθ{P(θ | x, δ)} = ground truth
1 if maxθ{P(θ | x, δ)} 6= ground truth.

The expected value in eq. (1) will then be equal to
the probability of conducting an experiment where
the result of Bayesian inference will not agree with
the ground truth.

The lower the utility, the better the experiment.
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3 Method

3.1 Experiment design

The goal of the experiment is to distinguish earth
spectra at four different times — modern, 0.8 Gyr
ago, 2.0 Gyr ago, and 3.9 Gyr ago — and with both
clear and cloudy weather. These eight spectra are the
hypotheses that the experiment should be able to dis-
tinguish confidently. Specifically, it is assumed that
the measured datum will be drawn from a Poisson
distribution with the mean given by the hypotheses.
This means that there are no nuisance parameters,
such as emissions from outside the planet like zodi-
acal dust, or instrumental noise, and that the only
source of uncertainty is the counting noise inherent
to a Poisson process.

The experimental design is characterized by the
following parameters:

• the observable wavelength range [λmin, λmax],

• the number of wavelength bins n, which are
uniformly distributed in the observable wave-
length range,

• the spectral resolution SR,

• the peak signal to noise ratio SNRpeak, and

• a quantity t, which is proportional to the ex-
posure time. It is chosen only up to propor-
tionality since the distance to the source, the
brightness of the source, the size of the mirrors
of the instrument etc. are not exactly known.

For a constant wavelength range, which is utilized
in this work, the parameters are related through the
relations

n ≈ 2 SR
λmax − λmin

λmax + λmin
,

t ≈
SNR2

peak

n
.

They are only approximations, since there exist spec-
tral resolutions where the corresponding number
of bins would be non-integer, such that n has to be
rounded.

3.2 Bayesian model

The eight hypotheses are labelled as θ = 1, 2, . . . , 8;
and the spectra used to generate the hypotheses are
originally of the form

Λθ = (λθ
1, . . . , λθ

250000),

where λθ
i indicates the number of photons per unit

time hitting the ith bin of the detector. For each
experimental design δ, the spectra have to be resam-
pled so that they have the correct number of bins n.
Also, they have to be rescaled such that the desired
peak SNR is realized. The spectra after resampling
and rescaling are denoted as

Λθ,δ = (λθ,δ
1 , . . . , λθ,δ

n ).

Finally, the random sampling of data is realized as

P(x | θ, δ) =
n

∏
i=1

Pois(λθ,δ
i , xi),

where

Pois(λ, x) =
λxe−λ

x!

is the probability of drawing x from a Poission distri-
bution with mean λ. For this simulation, 500 samples
were drawn for each of the eight hypotheses, yield-
ing N = 4000. To find the posterior likelihood, Bayes’
theorem,

P(θ | x, δ) =
P(x | θ, δ)P(θ)

P(x | δ) ,

is used with a flat prior, and the evidence P(x | δ) is
calculated through marginalization:

P(x | δ) = ∑
θ

P(x | θ, δ)P(θ).

3.3 Utility functions

The integral

U(δ) =
∫

P(x | δ)U(x | δ)dx

is approximated with the Monte Carlo estimator

U(δ) ≈ 1
N ∑

x∈X
U(x | δ),

where X is a random sample from the distribution
P(x | δ), and N is the number of samples.

The utility functions in section 2.3 are used.

4 Results & Discussion

4.1 Heatmaps

To get an overview of the performance of an experi-
ment, a few combinations of SRs and SNRs are com-
pared. The following parameters were used:
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(a) Posterior entropy [bits].
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(b) 1− confidence of inference.
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(c) Probability of inference not agreeing with ground truth.
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Fig. 2: The utility of experiments with different spectral resolu-
tion (SR) and signal-to-noise ratio (SNR). A lower utility
indicates a better experiment. As expected, a higher SR
and a higher SNR always correspond to a better perform-
ing experiment.

• wavelength range: 3 µm to 20 µm,

• SR ∈ {10, 50, 100},

• SNRpeak ∈ {1, 5, 10, 20},

• number of samples: 4000.

The utilities of experiment designs with different
SRs and SNRs are compared in fig. 2. All the util-
ities are stated in a way such that a lower utility
corresponds to a better experiment, which makes
comparisons easier.

As intuitively expected, all possible choices for
utility functions show that a higher SR and a higher
SNR are always rewarded with a better performance
of the experiment. A confidence of more than 97 %
can be achieved with SR = 50 and SNR = 5.

In fig. 2b, the numerical precision is sometimes
too low to distinguish the utility from zero, since the
calculation of the utility usually has to be carried out
in linear space rather than in logarithmic space. In
fig. 2c, the numerical precision is limited from below
by 1/N = 0.00025. Out of the three utility functions
tested, the posterior entropy gives the best numerical
precision for a given sample size N.

4.2 Ideal experiments for given exposure
times

Given a constant exposure time, SR and SNR are re-
ciprocal to each other, and in practice, a compromise
between the two has to be realized in an experiment.
Consequently, it is useful to determine which combi-
nation of SR and SNR will yield the best performance,
given a constant exposure time.

The following experimental parameters were used:

• wavelength range: 4 µm to 20 µm,

• exposure times: t ∈ {400, 1000, 4000}

• number of bins: n ∈ {2, 3, 4, . . . , 200},

• number of samples: 4000.

The utilities of experiments with constant expo-
sure time for distinguishing both clear and cloudy
weather are shown in fig. 3. A lower utility corre-
sponds to a better experiment, such that a minimum
in the plot indicates the ideal experiment.

Conveniently, the qualitative behaviour of the util-
ity is the same, independent of the choice of utility
function, even though their interpretations are dif-
ferent.
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Fig. 3: The utility of experiments with constant exposure times, but different compromises between SR and SNR, for both clear and
cloudy weather. The shaded areas are 1σ confidence intervals. All utility functions agree that a higher exposure time results
in a better experiment, and that the ideal experiment takes place at a spectral resolution higher than ≈ 30, but that even
higher resolutions are not more useful. The data points are inherently discrete, since only an integer number of wavelength
bins can be realized, but continuous lines are drawn between the data points as a guide to the eye, so that the fluctuations
are clearly visible.
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Fig. 4: The utility of experiments with constant exposure times, but different compromises between SR and SNR, for clear weather
only. The shaded areas are 1σ confidence intervals. In clear weather conditions, a spectral resolution of 5 is unexpectedly
very useful compared to other resolutions. Such an advantage only exists with clear weather, but not when both clear and
cloudy atmospheres should be distinguished, as shown in fig. 3.
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As expected, all utility functions reward a longer
exposure time with better performance. The opti-
mum performance is achieved with a spectral resolu-
tion of≈ 30, but higher resolutions are not beneficial.

The same simulation was also conducted with
only the four clear weather spectra in fig. 4, to demon-
strate that the resulting ideal experiments depend
strongly on the set of spectra that should be distin-
guished. All utility functions show that an exper-
iment with a spectral resolution of 5 is preferable
over most higher resolutions, whereas experiments
at SR = 4 or SR = 6 are considerably worse. This
unexpected behaviour shows that in some particular
situations, the compromise that usually exists be-
tween SNR and SR can be circumvented by choosing
the wavelength bins in a way that highlights features
where the spectra differ significantly, without requir-
ing a higher resolution. As can be seen by comparing
fig. 3 and fig. 4, this advantage at SR = 5 disappears
when the spectra of cloudy weather are added to the
simulation.

5 Conclusion

A Monte Carl simulation was conducted to evaluate
how good the infrared spectrometer of the LIFE space
mission would have to measure to distinguish the
emission spectrum of earth at different times and
weathers, and how the robustness and utility of such
an experiment can be evaluated.

The three utility functions that were tested are the
posterior entropy, the Bayesian confidence of infer-
ence, and the probability that the result of Bayesian
inference does not agree with the ground truth. All
three utility functions show the same qualitative be-
haviour, but the posterior entropy has the highest
numerical precision for a given number of Monte
Carlo samples, which gives it an advantage in com-
paring high-precision measurements.

A confidence of inference of more than 97 % can
be achieved with a spectral resolution of 50 and a
signal-to-noise ratio of 5. To optimally utilize a given
exposure time, the spectral resolution should be 30
or higher.

It should be noted that this analysis only takes
into account eight earth spectra in total, whereas the
LIFE mission should be able to analyse a much larger
variety of planets and atmospheres. Furthermore, an
ideal instrument that is always limited by photon
noise was assumed, as well as that only the spectrum
of the planet will be recorded without any other
sources. In order to make a recommendation for the
instrumentation of LIFE, a larger variety of sources

has to be analysed with a more realistic simulator of
the instrument.
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